skip to main content


Search for: All records

Creators/Authors contains: "Lajeunesse, Marc J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The carbonate chemistry of freshwater systems can range from inorganic carbon‐limited to supersaturated with respect to the atmosphere, and the pH of these systems can vary temporally and spatially from alkaline to acidic. Determining how these heterogeneous systems respond to increases in atmospheric CO2is critical to understanding global impacts of these changes. Here, we synthesize 22 studies from a variety of systems to explore the effects of elevated CO2on freshwater chemistry and microalgae, which form the base of autotrophic food webs. Across the variability in freshwater systems, elevated CO2significantly affected water chemistry by decreasing pH and increasing dissolved inorganic carbon. Microalgae were also affected by elevated CO2with measured increases in (1) nutrient acquisition through microalgal carbon‐to‐nutrient ratios, (2) photosynthetic activity, and (3) growth. While these effects were measured from controlled experiments, the results indicate a wide range of potential freshwater ecosystem effects from elevated atmospheric CO2. Our synthesis also identified several knowledge gaps. Generally, larger sample sizes and studies of longer duration are needed for more robust analyses and conclusions. Additionally, more field experiments across a range of freshwater ecosystem types and studies involving benthic species and multiple trophic levels are needed to strengthen global predictions across the broad variability found within and among freshwater systems.

     
    more » « less
  2. Abstract

    Most plants engage in symbioses with mycorrhizal fungi in soils and net consequences for plants vary widely from mutualism to parasitism. However, we lack a synthetic understanding of the evolutionary and ecological forces driving such variation for this or any other nutritional symbiosis. We used meta-analysis across 646 combinations of plants and fungi to show that evolutionary history explains substantially more variation in plant responses to mycorrhizal fungi than the ecological factors included in this study, such as nutrient fertilization and additional microbes. Evolutionary history also has a different influence on outcomes of ectomycorrhizal versus arbuscular mycorrhizal symbioses; the former are best explained by the multiple evolutionary origins of ectomycorrhizal lifestyle in plants, while the latter are best explained by recent diversification in plants; both are also explained by evolution of specificity between plants and fungi. These results provide the foundation for a synthetic framework to predict the outcomes of nutritional mutualisms.

     
    more » « less
  3. Abstract

    Complex ecological relationships, such as host–parasite interactions, are often modeled with laboratory experiments. However, some experimental laboratory conditions, such as temperature or infection dose, are regularly chosen based on convenience or convention, and it is unclear how these decisions systematically affect experimental outcomes. Here, we conducted a meta‐analysis of 58 laboratory studies that exposed amphibians to the pathogenic fungusBatrachochytrium dendrobatidis(Bd) to understand better how laboratory temperature, host life stage, infection dose, and host species affect host mortality. We found that host mortality was driven by thermal mismatches: hosts native to cooler environments experienced greater Bd‐induced mortality at relatively warm experimental temperatures and vice versa. We also found that Bd dose positively predicted Bd‐induced host mortality and that the superfamilies Bufonoidea and Hyloidea were especially susceptible to Bd. Finally, the effect of Bd on host mortality varied across host life stages, with larval amphibians experiencing lower risk of Bd‐induced mortality than adults or metamorphs. Metamorphs were especially susceptible and experienced mortality when inoculated with much smaller Bd doses than the average dose used by researchers. Our results suggest that when designing experiments on species interactions, researchers should carefully consider the experimental temperature, inoculum dose, and life stage, and taxonomy of the host species.

     
    more » « less
  4. Abstract

    In many regions across the globe, extreme weather events such as storms have increased in frequency, intensity, and duration due to climate change. Ecological theory predicts that such extreme events should have large impacts on ecosystem structure and function. High winds and precipitation associated with storms can affect lakes via short‐term runoff events from watersheds and physical mixing of the water column. In addition, lakes connected to rivers and streams will also experience flushing due to high flow rates. Although we have a well‐developed understanding of how wind and precipitation events can alter lake physical processes and some aspects of biogeochemical cycling, our mechanistic understanding of the emergent responses of phytoplankton communities is poor. Here we provide a comprehensive synthesis that identifies how storms interact with lake and watershed attributes and their antecedent conditions to generate changes in lake physical and chemical environments. Such changes can restructure phytoplankton communities and their dynamics, as well as result in altered ecological function (e.g., carbon, nutrient and energy cycling) in the short‐ and long‐term. We summarize the current understanding of storm‐induced phytoplankton dynamics, identify knowledge gaps with a systematic review of the literature, and suggest future research directions across a gradient of lake types and environmental conditions.

     
    more » « less